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Context for this Paper

% University of Michigan CSE reading group meetings:

Noah 1 Curran ABOUT BLOG RESEARCH CV AV SAFETY AND SECURITY READING GROUP  INTERESTS

AV Safety and Security Reading Group

Alongside Ryan Feng, | am co-organizing a reading group for Autonomous Vehicle (AV) Safety and Security. This is hosted in the CSE
Department at the University of Michigan, but anyone who is able to make it in-person is welcome to join.

«* Inter-lab discussions:
L Where did AV security research originate?
L What has its progress focused on?

L Where is it headed?
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Overview

% We breakdown the AV security problem into context of the Sense-Plan-Act pipeline:
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% This becomes important when we de-isolate each component and discuss security in
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the context of the entire end-to-end process
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% Rich environment data:
L Road layouts
Traffic signs
Businesses

Pedestrians
Other vehicles

Collected with various sensors
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@ Privacy and Surveillance g2 L Ol [

TechScape: Self-driving cars are here
and they’re watching you

Data can be exploited for targeted or

mass surveillance of individuals and

Driverless cars have their cameras trained on the road -and on
those inside, making some wonder how that data will be used.

communities. Plus, Twitter's viewing limits

Privacy vs. Utility/Safety Trade-Oft

L (Hint) Privacy never wins

Safety Score S—

A Lemonade Safety Score pulls together several factors about your driving and is

ing behaviors
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Police Are Requesting Self-Driving
Car Footage for Video Evidence

requested by 1aW San Francisco police request driverless car footage from Waymo and Cruise to
solve crimes from robberies to murders _ = _ =
San Francisco Police Are Using Driverless Cars
as Mobile Surveillance Cameras

Warra—n tS . “Autonomous vehicles are recording their surroundings continuously

Instances of data being

enforcement without

and have the potential to help with investigative leads,” an internal

n . training document states.

A Waymo LLC vehicle in Chandler, Arizona. Photographer: Caitlin O'Hara/Bloomberg

By Julia Love
June 29, 2023 at 10:00 AM EDT
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O Existing Works I el Py

Most papers and journals focus on legal 000,

implications : www

Existing computer science research is Privacy i fozp(x
Individual Privacy |  Autonomous Vehicles Population Prwacy

0
and proprietary privacy (federated ~
learning, differential privacy, etc). ((( (ﬁ )))Pr;%%tary -

Fig. 1. Overview of privacy in autonomous vehicles.

too focused on machine learning privacy

[1] Privacy of Autonomous Vehicles: Risks, Protection Methods, and Future Directions., Xie e a/, arXiv:2209.04022 M MICHIGAN ENG I NEERING
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% More focus on privacy research in autonomous vehicles is needed:

L Opt-out systems for bystander’s data privacy

L Built-in privacy into cameras and vehicles [1]
m  Blur faces, bodies, businesses, license plates, etc.
Transparency and auditing systems for AV data privacy

Finding safer alternatives to “adversarial attack”-based privacy technologies

[1] PrivacyLens: On-Device PII Removal from RGB Images using Thermally-Enhanced Sensing, Iravantchi ez a/, PETS 2024 M MICHIGAN ENG | NEERING
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% Vehicle perception:

L, Cameras

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN



@® 2 (3) (4) ®

Environment Sensor System Compute Algorithm Environment
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% Vehicle perception:
L Cameras

L Radar
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% Vehicle perception:
L Cameras
L Radar
L LiDAR

M | MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN



@ Perception Sensors

% Vehicle perception:
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% Vehicle perception:

N

Cameras
Radar
LiDAR
Ultrasonic

Thermal
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% Indirect Attacks

L Pavement modifications

Y

Attacker can pretend to be road workers to
deploy the attack using adhesive road patch [51].

Source: Sato et al. [Security 21]
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¢ Indirect Attacks
L Pavement modifications

L Adversarial patch projection / clothing

This Clothing Line Tricks Al Cameras
Without Covering Your Face

2, PESALABANDARA

© s,
£ [v]r]=]e)

Source: Man et al. [Security 23] Source: Bandara, PetaPixel
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% Indirect Attacks
L Pavement modifications
L Adversarial patch projection / clothing
L Adversarial objects

Benign case Adversarial case

Source: Cao etal. [S&P 21]
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® Sensor Attacks = e B e

% Indirect Attacks
L Pavement modifications
L Adversarial patch projection / clothing
L Adversarial objects

Direct Attacks
L Laser for LIDAR removal / injection

Pristine 3D point cloud Attacker-perturbed 3D
point cloud

Source: Cao etal. [CCS 19]
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® Sensor Attacks el g e

% Indirect Attacks

A cheap laser pointer
with alligator clips

N Pavement mOdiﬁcationS A ‘( ¥ | on its battery electrodes

L Adversarial patch projection / clothing
L Adversarial objects

Direct Attacks
L Laser for LIDAR removal / injection

L Laser for microphone injection

Audio amplifier |§ Laser current driver

Source: Sugawara et al. [Security 20]
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® Sensor Attacks S e B e

Stop (100%)

% Indirect Attacks S

L Pavement modifications

L Adversarial patch projection / clothing
L Adversarial objects

Direct Attacks No Entry (66%)
L Laser for LIDAR removal / injection “ T

L Laser for microphone injection
L, IR / acoustics / electromagnetic

interference for camera injection

(a) Normal operation (b) Under attack

Source: Sato et al. [NDSS 24]  Source: Kohler et al. [CCS 22]
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% Indirect Attacks
L Pavement modifications
L Adversarial patch projection / clothing
L Adversarial objects

Direct Attacks

L Laser for LIDAR removal / injection

L Laser for microphone injection

L IR /acoustics / electromagnetic (a) Normal. (b) Spoofed. (¢) Jammed.
interference for camera injection Source: Yan et al. [DEF CON ‘16]

Ultrasonic spoofing
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® Sensor Attacks —

% Indirect Attacks

L Pavement modifications

L Adversarial patch projection / clothing

Blue: GPS position
Red: LiDAR locator position

L Adversarial objects

Direct Attacks
L Laser for LIDAR removal / injection

Green: MSF output

 Physical World View |
L Laser for microphone injection

L IR/ acoustics / electromagnetic :
Attack to the Left Attack to the Right gNG

interference for camera injection
Source: Shen et al. [Security 20]

Ultrasonic spoofing

GPS / GNSS spoofing
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® Sensor Defenses | g | [ eactisg

For indirect attacks:

L Train on dataset which includes adversarial perturbations (adversarial training)

L Strong against known attacks with minor impact on normal performance

For direct attacks:
Hardware modifications
Spatial and temporal invariant checks
Physical modifications, e.g., lens filters

Classical intrusion/anomaly detection techniques
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% Absence of provable defenses

L Even invariants make assumptions that are often broken in the real world

% No common evaluation practice

Limited knowledge of downstream impact on safety
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Robot Operating System (ROS)

L Communication tool

RViz*
File panels Help
fointersct | Mo Camera  [ISelect ForusCamera = Messure < 2DPoseEsimate < 2DNavGoal @ Publishpomt &

1 Displays. »@ Views

® Global Options.
) . Foxed Frame map
Jright_wheel_velocity Background Color W 48;48; 48
Frame rate 0
Defaut Light v
Target Frame 2ed_camera_ce.
7

+ Global Status: Ok Tomet Frame ed can
I Basic 0 - " Focal shap... 0.05
& aps z FocalShap.

» I CostMap_Local
» w Polygon

» 2 rtab. map

» ¢ MarkerArray
B Depth

Costmap_clobal
Displays an occupancy grid on the ground plane from a
ey, migs£OccupancyGrid. More Information

Type: (ombit(vi)  ~|  zero
~ Current View  Orbit (rviz)
001

32100
pitch 029539

» Foclpoint 00,0

Jemd_vel

/myo_controller [serial_port

Duplicate Remove Rename

fleft_wheel_velocity

Remove | Rename

© Time 0

ROSTime: 1556379565.50 | ROS Elapsed: 21.25 Wall Time: 155655761090 | wall Elapsed: 21.21 Experimental

311ps

Reset
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& Middleware Security

o Message passthrough authentication

Node creation authentication

Imyo_classifier

% Effects:
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Jright_wheel_velocity

/diagnostics

Imyo_controller

L Excessive resource utilization; malicious payloads

L Impact scheduler to cause timing delays — Take advantage of ROS bug that causes starvation

Jrobot_velocity

fleft_wheel_velocity
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Environment

Inte ractign
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% AV software is cornplex and prone to same vulnerabilities as conventional systems

[y

L Safety-critical application domain of AV operation raises the stakes

% AVsare a real-time cyber-physical system — Exploit opportunities galore

L Timing-correctness and real-time schedulability of hard-deadline tasks
L Power is a scarce resource and overuse may hinder long-term operation

L System predictability and downstream impact on algorithm deadlines
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With advancements in deep learning, many recent AV algorithms are based on Deep
Neural Networks (DNNs).

Goal: Optimal navigation decision—making based on accurate and robust perception &

tracking.

Sensor data

((())) PerceptionH Tracking H Prediction H Planning

=

Object detection Multi Object Tracking Multi Object Forecasting « Rule-based
+ DNN-based
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% Basic assumption: Objects are consistently detected over consecutive frames.

DX Highly sensitive to both natural and artificial corruptions

L E.g., occlusion, weather particles, spoofed objects

Detection Results Tracking Results [1 ]

O ' IS

Fusion,

“'411‘_’ ] 4] 1t Planning,

timet+1 | | Control

N S timet+1

Images captured in fimets2 timet+2
sequence

bbox, object class Tracker bbox, object class

trajectory

[1] Physical Hijacking Attacks against Object Trackers, Muller ez al., CCS 2022 M MICHIGAN ENG | NEERING
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To violate tracking algo’s assumption, attackers manipulate bounding boxes via

adversarial attack [1] Location or size

Different iterations during adversarial attack C h an g e d
Lo A | e N

Clean image iter= 8 Adversarial example

% Identity the attack zone that is physically plausible [2]

L Avoid unrealistic manipulations
(e.g., puta car into sky)

[1] Robust Tracking against Adversarial Attack, Jia ez 2/, ECCV 2020 M MICHIGAN ENG | NEERING

[2] Physical Hijacking Attacks against Object Trackers, Muller ez al., CCS 2022 UNIVERSITY OF MICHIGAN
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Navigation
% In navigation, AVs find the optimal routes to their destination

Diﬁiculty in distinguishing between adversarial and genuine situations
N Highly stochastic and dynamic driving situation

L Various and complicated driving intentions of surrounding vehicles (e.g., cut-ins, overtakings)
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Manipulates their vehicle movements to endanger a targeted vehicle [1]

L Itdoes notlook intentionally malicious

L Cause the victim to violate its safety standards

Tesla is forced
driving off road

7/
1 %4

Manipulate observed states and environmental dynamics to mislead RI-based
decision-making systems [2]

[1] Discovering Adversarial Driving Maneuvers against Autonomous Vehicles, Song et al., USENIX Security 2023
[2] Toward Trustworthy Decis

ision-Making for Autonomous Vehicles: A Robust Reinforcement Learning Approach with Safety Guarantees, He et al., Engineering 2024.
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DNN-Based Algorithms =

®

Environment

Interactign

Data-driven characteristics and model’s inherently limited leaming capacity hinder

capturing the full complexity of real-world driving scenarios.

Beyond artificial corruptions by adversaries, natural corruptions (e.g., adverse weather

and aging sensors) can impact performance.
L Accuracy significantly drops on OOD inputs
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Error Propagation in Sequential Execution of Multi-DNN.

Sensor data

=

Object detection Multi Object Tracking Multi Object Forecasting « Rule-based
< DNN-based

Limited Coverage on Complex and Diverse Real-World Driving Environment.

Lack of Evaluation Metrics for practical and safe AV Algorithms

L Common metrics (e.g., mAP and mIoU) do not guarantee the model’s feasibility
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% How the AV is controlled has direct consequences on the world around it

(o

% Isitconsidering:
L Rules of the road?

L Social norms?

L Standard negotiation practices?
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%  Who has liability when security issues cause harm to others?

L Driver of AV? Manufacturer of AV? OEM of AV algorithm?

% Would be more clear if malicious intent can be traced to an adversary [1]

/7
A X4

AV industry cooperation with regulators may improve public comfort [2]

[1] Norms of Computer Trespass, Orin S. Kerr. Columbia Law Review 1143, Vol. 116
[2] Autonomous Vehicle Reg

UNIVERSITY OF MICHIGAN
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i Environment B, Interactiqn

ANSI/UL 4600 - Safety for Autonomous Products

_ a
e,

ISO 26262 - Functional Safety

ISO 21448 — Safety of Intended Functionality

ISO/SAE 21434 — Road Vehicle Cybersecurity

[1] Norms of Computer Trespass, Orin S. Kerr. Columbia Law Review 1143, Vol. 116

[2] Autonomous Vehicle Regulation & Trust: The Impact of Failures to Comply with Standards, Widen and Koopman. UCLA JL €3 Tech. M MICHIGAN ENG I NEERING
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® Several high—proﬁle accidents in recent years have lead to increased distrust

[y

e Ifstricter regulation follows it should:

L Carefully consider how it may both positively and negatively impact the AV industry

L Provide support to AV makers for to ensure an easy transition for continued development

® AV “driver licenses” are supplied in an ad hoc manner

L Requires a more active (rather than passive) approach with a stronger safety culture
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Concluding Research Recommendations

Comprehensive end-to-end testing of AV safety and security

Effective utilization of collaborative perception to gain comprehensive understanding

of environment (and can be used for security and safety validation)

L Communication of shared data introduces additional security concerns not discussed here

AV licenses should have stricter requirements that penalize OEMs who do not follow

the best practices for ensuring their algorithmic safety and security
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Questions?

Takeaways: Contributors
% End-to-end AV

security research is still

an open challenge

% Focus of the research

should pivot from

ablation studies to

deploying attacks in Paper URL

realistic AV scenarios

. h
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