

Analysis and Prevention of MCAS-Induced Crashes Noah T. Curran, Thomas W. Kennings, Kang G. Shin

Background

- Maneuvering Characteristics Augmentation System (MCAS) [1]
 - An autonomous flight pitch stabilizing controller used in Boeing 737-MAX
 - Introduced due to concerns related to pilots ability to safely fly the 737-MAX
- Software defect lead to crash and grounding of two 737-MAX aircraft [2]
- FAA grounded 737-MAX and required updates that resolve three issues [3]:
 - 1. All available AoA sensors must exceed 17° and cannot disagree >5.5°
 - 2. MCAS can activate only once in order to stop runaway stabilizer
 - 3. Pilots should be trained on how to manually disengage MCAS
- The update reverses the purpose of $MCAS \rightarrow prioritizes pilot control$

Semi-Autonomous MCAS (SA-MCAS)

Internal Consistency Check

- SADS model uses sensors collected by Air Data Inertial Reference Unit (ADIRU) • Includes AoA, noted with α
- Model-free: $\alpha = \tan^{-1}(u/v)$
- Model-based: $\alpha = f(C_1, M, h)$
- Check whether the estimated α is similar and pass onward to next stage if they are

- to MCAS

University of Michigan–Ann Arbor, Department of Computer Science and Engineering

External Consistency Check

• Compare α from ADIRU with α from SADS • If the α from *either* the left or right ADIRU is similar to the SADS estimate, then pass the value

Experimental Methods & Results

- Perform experiments with Simulink that
 - Custom rule-based pilot controller
 - Sensor failure injection module
 - JSBSim flight dynamics engine [5]
 - MCAS control logic module
- Experiments include 9 sensor failure mode 2 pilot failure modes
 - For each failure mode, there is a single parameter that is not constant
 - Goal is to find the first value for the parameter for which a crash occurs

S_{new}, preventing crashes SA-MCAS is capable of securing the best of both MCAS_{old} and MCAS_n during sensor failures while also maintaining performance during dangerous pilot control.

Discussion, Future Work, 8

- Discussion:
 - Passenger trust of autonomous control still
 - Limited ability to prevent dangerous pilot co 0
- Future Work:
 - What do we do when neither the pilot nor the 0
 - Currently we do equal to the better of auton
- Takeaways:
 - Semi-autonomous systems should not defau
 - A good design philosophy should provide dy
 - SA-MCAS demonstrates this point, showing

References:

1] D. Gates and M. Baker, "The Inside Story of MCAS: How Boeing's 737 MAX System Gained Power and Lost Safeguards," The Seattle Times, 2019. 2] Federal Aviation Administration. (2019) Emergency Order of Prohibition. [Online]. Available: https://web.archive.org/web/20230417205843/https://www.faa.gov/news/updates/media/Emergency Order.pdf 3] Boeing. (2019) 737 MAX Software Update. [Online]. Available: https://www.boeing.com/commercial/737max/737-max-software-updates.page [4] BBC. (2019) Boeing 737 MAX Lion Air Crash Caused by Series of Failures. [Online]. Available: https://www.bbc.com/news/business-50177788 [5] J. Berndt, "JSBSim: An Open Source Flight Dynamics Model in C++," in AIAA Modeling and Simulation Technologies Conference and Exhibit, 2004

3

EMBEDDED SYSTEMS WEEK

has:	MCAS Stress Test	MCAS _{old}	MCAS _{new}	SA-MCAS	
	Sudden Val	17°	No failure	No failure	
	Sudden Duration	140.5450s	No failure	No failure	
	Sudden Recovery	2.7991s	No failure	No failure	
	Delta Val	13.8750°	No failure	No failure	
	Delta Duration	140.5450s	No failure	No failure	
	Delta Recovery	2.7991s	No failure	No failure	
	Gradual Linear	1.5000	No failure	No failure	
	Gradual Log	222.5000	No failure	No failure	
les and	Gradual Quadratic	1.4999	No failure	No failure	
	Stall Pitch	51.5497°	46.2531°	51.5497°	
	Stall Recovery	5.6333s	3.9084s	5.6333s	

• Compare the original MCAS (MCAS_{old}), the MCAS with the FAA's requirements (MCAS_{new}), and SA-MCAS

& Conclusion	4			
needs to be regained				
ontrol due to limitations inherent to MCAS's control authority				
he autonomous control is safe?				
nomous/manual control, but can we do better?				
ilt control to the manual operator or the autonomous controller				
ynamic control authority depending on which option is safer				
g that it can safely control the 737-MAX when either the pilot or MCAS is u	nsafe			