Analysis and Prevention of MCAS-Induced Crashes

Noah T. Curran, Thomas W. Kennings, Kang G. Shin Computer Science and Engineering, University of Michigan

2024 ACM SIGBED International Conference on Embedded Software (EMSOFT '24) Raleigh, NC, USA 9/30/24

Semi-autonomous systems should not default control to the manual operator or the autonomous controller!

Timeline of Boeing 737-MAX Crashes

Changes During Flight Testing

2016

- <u>Pre-2016</u>: Boeing decides to include MCAS to offset upward pitch due to heavier engines
- <u>March/April 2016</u>: Flight-test pilots discover issue with flight control during low-speed flight conditions
- <u>Sometime after</u>: Boeing gives ~4x greater authority to MCAS... FAA agreed not to notify pilots of the change to MCAS

Return to Service

• <u>March 11-13, 2019</u>: All major countries ground all MAX flights

- Late-January 2021: EASA and Transport Canada cleared MAX with additional requirements
- <u>December 2021</u>: China becomes one of last major countries clear the MAX

Timeline of Boe

• December 2021: China becomes one of last major countries clear the MAX

New MCAS Requirements

Check if all available AoA sensors exceed 17°
 → They also cannot disagree more than 5.5°

2. Using Mid-Value Select (MVS), activate MCAS only once until MVS "resets" → Meant to prevent runaway stabilizer problem

3. Pilots can manually disengage MCAS → Possible before, but now pilots trained to switch off *electric stabilizer trim*

Analysis of Old/New MCAS Requirements

MICHIGAN ENGINEERING

Analysis of Old/New MCAS Requirements

Time (sec)

Time (sec)

Semi-Autonomous MCAS (SA-MCAS)

Synthetic Air Data System (SADS)

Synthetic Air Data System (SADS)

SA-MCAS Arbiter

External consistency check

Compare left and right ADIRU sensor outputs with one another
 E.g., how similar are α₁ and α_r to the results of the SADS model?

Research Challenges

How to streamline the design and evaluation of MCAS without a physical aircraft?

Which control from MCAS and the human pilot threaten the safety of the aircraft?

8

Does SA-MCAS mitigate the issues present in *MCAS*_{old} and *MCAS*_{new}?

1 Simulation of MCAS: Overview of Simulator

Simulation of MCAS: Configuring Sensors

1 Simulation of MCAS: Building MCAS Module

1 Simulation of MCAS: Model Sensor Failures

Simulation of MCAS: Model Pilot Control

Research Challenges

0

How to streamline the design and evaluation of MCAS without a physical aircraft?

2

Which control from MCAS and the human pilot threaten the safety of the aircraft?

8

Does SA-MCAS mitigate the issues present in *MCAS*_{old} and *MCAS*_{new}?

- We provide an open-source toolkit built on JSBSim.
- We validate the correctness and usefulness of the simulations and include guidelines for using this toolkit.

Experiment Setup (Sensor Fault)

• Sudden and delta errors:

1. $\delta \in [0, 90]^{\circ}$ $t \in [100, 150]s$ pilot react after 5s

2. $\delta = 18^{\circ}$ $t \in [100, t_{end}]s$ $t_{end} \in [110, 180]s$ pilot react after 5s

3. $\delta = 18^{\circ}$ $t \in [100, 150]s$ pilot react after $\in [0, 10]s$

• Gradual errors:

o
$$f(t) = at, a \in [0, 3]$$
 $f(t) = a \log(t), a \in [0, 500]$ $f(t) = at^2, a \in [0, 3]$

- Pilot react after 5s
- If MCAS activates, pilot trims horizontal stabilizer at rate of 3.5 RPS

Experiment Setup (Pilot Fault)

- 1. Pitch variation
 - Pilot pitches aircraft $\in [20, 90]^{\circ}$
 - If MCAS activates, pilot responds in 5s
- 2. Response variation
 - \circ Pilot pitches aircraft 50°
 - If MCAS activates, pilot responds in $\in [0, 10]s$

2 Analysis of MCAS_{old} and MCAS_{new} Summary

MCAS Stress Test	\mathbf{MCAS}_{old}	MCAS _{new}
Sudden Val	17°	No failure
Sudden Duration	140.5450s	No failure
Sudden Recovery	2.7991s	No failure
Delta Val	13.8750°	No failure
Delta Duration	140.5450s	No failure
Delta Recovery	2.7991s	No failure
Gradual Linear	1.5000	No failure
Gradual Log	222.5000	No failure
Gradual Quadratic	1.4999	No failure
Stall Pitch	51.5497°	46.2531°
Stall Recovery	5.6333s	3.9084s

Research Challenges

How to streamline the design and evaluation of MCAS without a physical aircraft?

Which control from MCAS and the human pilot threaten the safety of the aircraft?

Does SA-MCAS mitigate the issues present in *MCAS*_{old} and *MCAS*_{new}?

- We provide an open-source toolkit built on JSBSim flight.
- We validate the correctness and usefulness of the simulations and include guidelines for using this toolkit.
- We demonstrate threats that show the new Boeing MCAS design is susceptible to dangerous control from the pilot.
- Our analysis unveils precise upper bounds for aircraft recoverability during erroneous MCAS events.

③ Analysis of SA-MCAS

MCAS Stress Test	MCAS _{old}	MCAS _{new}	SA-MCAS
Sudden Val	17°	No failure	No failure
Sudden Duration	140.5450s	No failure	No failure
Sudden Recovery	2.7991s	No failure	No failure
Delta Val	13.8750°	No failure	No failure
Delta Duration	140.5450 s	No failure	No failure
Delta Recovery	2.7991s	No failure	No failure
Gradual Linear	1.5000	No failure	No failure
Gradual Log	222.5000	No failure	No failure
Gradual Quadratic	1.4999	No failure	No failure
Stall Pitch	51.5497°	46.2531°	51.5497°
Stall Recovery	5.6333s	3.9084s	5.6333s

MICHIGAN ENGINEERING

③ Evaluation of SA-MCAS

S

	MCAS Stress Test	MCAS _{old}	MCAS _{new}	SA-MCAS					
	Sudden Val Sudden Duration	$\frac{17^{\circ}}{140.5450s}$	No failure No failure	No failure No failure					
Final Conclusion: SA-MCAS is capable of securing the best of both worlds, preventing crashes during sensor failures while also maintaining performance during dangerous pilot control.									
	Gradual Log Gradual Quadratic Stall Pitch Stall Recovery	222.5000 1.4999 51.5497° 5.6333s	No failure No failure 46.2531° 3.9084s	No failure No failure 51.5497° 5.6333s					

MICHIGAN ENGINEERING

Research Challenges

How to streamline the design and evaluation of MCAS without a physical aircraft?

Which control from MCAS and the human pilot threaten the safety of the aircraft?

Does SA-MCAS mitigate the issues present in *MCAS*_{old} and *MCAS*_{new}?

- We provide an open-source toolkit built on JSBSim flight.
- We validate the correctness and usefulness of the simulations and include guidelines for using this toolkit.
- We demonstrate threats that show the new Boeing MCAS design is susceptible to dangerous control from the pilot.
- Our analysis unveils precise upper bounds for aircraft recoverability during erroneous MCAS events.
- We evaluate SA-MCAS, which is capable of resolving conflicts between the manual and automatic control.
- It is capable of performing the best of MCAS_{old} / MCAS_{new}

Discussion and Future Work

- Discussion
 - Passenger trust still needs to be regained
 - Limited ability to prevent dangerous pilot control

- Future Work
 - What do we do when neither the pilot nor the autonomous control is safe?
 - Currently do equal to better of autonomous/manual control, but can we do better?

Questions?

Takeaways:
Semi-autonomous systems should not default control to manual operator or autonomous controller

 SA-MCAS provides dynamic control arbitration for 737-MAX

1 Simulation of MCAS: Validation

JT610 Crash Simulation Using the Modeling Toolkit

Why Did the 737-MAX Crashes Occur?

Sources: Boeing, Mentourpilot

Bloomberg

Boeing 737 Aircraft Network

Synthetic Air Data System (SADS)

Example estimating AoA Model Free: $\alpha = \tan^{-1} \left(\frac{u}{v}\right)$ Model Based: $\alpha = f(C_l, M, h)$

Semi-Autonomous MCAS (SA-MCAS)

- 1. Internal consistency check
 - Compare SADS model estimates with one another
 - > E.g., how similar are the results of $\alpha = \tan^{-1}\left(\frac{u}{v}\right)$ and $\alpha = f(C_l, M, h)$?
- 2. External consistency check
 - Compare left and right ADIRU sensor outputs with one another
 - > E.g., how similar are α_{I} and α_{r} to the results of the SADS model?

IGAN ENGINEERING

How Does *MCAS*_{old} Cause Dangerous Control?

(e) Pilot can have some variability in their response time and exerted effort on the HS hand-crank. This figure examines the impact of this variability on aircraft recovery. The recoverability of the flight *is not* dictated by the pilot's reaction speed and rotation of the HS.

Fig. 5: Summary of the stress test simulation for MCAS_{old}.

How Does *MCAS* Cause Dangerous Control?

(e) Pilot can have some variability in their response time and exerted effort on the HS hand-crank. This figure examines the impact of this variability on aircraft recovery. The recoverability of the flight *is* dictated by the pilot's reaction speed and rotation of the HS.

Fig. 6: Summary of the stress test simulation for $MCAS_{new}$.

B Evaluation of SA-MCAS

(e) Pilot can have some variability in their response time and exerted effort on the HS hand-crank. This figure examines the impact of this variability on aircraft recovery. The recoverability of the flight *is not* dictated by the pilot's reaction speed and rotation of the HS.

Fig. 7: Summary of the stress test simulation for SA-MCAS.

