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ABSTRACT
In the current landscape of autonomous vehicle (AV) safety and se-

curity research, there are multiple isolated problems being tackled

by the community at large. Due to the lack of common evaluation

criteria, several important research questions are at odds with one

another. For instance, while much research has been conducted on

physical attacks deceivingAVperception systems, there is often inad-

equate investigations on working defenses and on the downstream

effects of safe vehicle control.

This paper provides a thorough description of the current state

of AV safety and security research. We provide individual sections

for the primary research questions that concern this research area,

including AV surveillance, sensor system reliability, security of the

AV stack, algorithmic robustness, and safe environment interaction.

Wewrap up the paperwith a discussion of the issues that concern the

interactionsof these separateproblems.At theconclusionof eachsec-

tion, we propose future research questions that still lack conclusive

answers. This position article will serve as an entry point to novice

and veteran researchers seeking to partake in this research domain.

CCS CONCEPTS
• Security and privacy→ Embedded systems security; •Com-
puter systems organization→ Sensors and actuators; Robotics.

KEYWORDS
autonomous vehicle (AV), safety, security, cyber-physical system

(CPS)

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CSCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1232-6/24/10

https://doi.org/10.1145/3689936.3694694

ACMReference Format:
Noah T. Curran, Minkyoung Cho, Ryan Feng, Liangkai Liu, Brian Jay Tang,

Pedram MohajerAnsari, Alkim Domeke, Mert D. Pesé, and Kang G. Shin.

2024. Achieving the Safety and Security of the End-to-End AV Pipeline. In

Proceedings of the 2024 Cyber Security in CarSWorkshop (CSCS ’24), October
14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3689936.3694694

1 INTRODUCTION
Aspart of theproliferationof autonomousvehicles (AVs), automotive

manufacturers have argued that they will improve the overall safety

of roadways [30, 131]. For instance, after one-milliondriverlessmiles,

Cruise has claimed that their “safety- minded" [29] self-driving tech-

nology is safer on average than a human driver [146]. Despite this,

Cruise has faced immense scrutiny over their self-driving technol-

ogy due to a series of recent accidents [58, 90, 116]. Some question

whether a human driver would have caused these accidents [77]. In

the aftermath, Cruise has recalled their AVs and ceased operation

for the foreseeable future [31, 76].

Alongside the safety issues that AVs must still overcome, there

have been advancements from academia of theoretical security con-

cerns of AVs. These findings range from attacks on perception sys-

tems using adversarial ML techniques to tricking the object tracking

systems. There are also more traditional attack vectors that use soft-

ware exploits to gain unauthorized privilege escalation within the

AV software stack. Coupling both the security and safety of an AV,

assessing the robustness of the guarantees of correct AV operation

is a complex procedure.

The structureofourpositionpaper is as follows. First,weprovidea

brief background of concepts necessary for understanding AV safety

and security. Then, we provide the current state of research from

each identifiable community in the literature (summarized in Fig. 1).

Each of these sections concludes with the limitations and takeaways.

In this article, we contribute the following:

• We provide a high-level overview of each major component

to the AV. These components are summarized in Fig. 1.

• For each component of the AV, we present limitations of the

current state-of-the-art research which has direct implica-

tions toward safety/security.
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Figure 1: A summary of the components of the AV system.
The focus is on themajor topics of inquiry that concern the
safety/security community. (1) Preserving the privacy of the
environment around the vehicle. (2) Ensuring the correctness
of sensor measurements. (3) Maintaining the integrity of
the compute environment stack, including themiddleware,
RTOS, and CPU/GPU resources. (4) Proving algorithmic
guarantees/robustness with respect to ensuring AVmission
completion. (5) Providing safe and socially acceptable control
of the AV as it interacts with its environment.

• To jump-start future research that may prioritize these lim-

itations, we propose research questions for the major compo-

nents of the AV, as well as the end-to-end system as a whole.

2 BACKGROUND
In Fig. 1 we present a non-traditional overview of the components of

theAV. Typically, most introductions toAVs present a Sense-Plan-Act
control loop. However, Sense-Plan-Act does not have an abstraction
that shows the important portions of the attack surface. In contrast,

our representation combines the planning and control of the AV as

part of the algorithmic processes, and we expose the middleware as

a component between the sensor system and these algorithms. Our

abstraction also raises importance to the environment before and

after the AV is controlled. In this section we provide background

necessary for understanding the goals of these components before

we discuss the safety and security issues in the following sections.

2.1 Perception Sensors
In order to know what the world looks like around itself, the AV

must use sensors that provide perception. The primary sensing units

of the vehicle may include one or more camera, radar, LiDAR, or

ultrasonic sensor [41]. For various other control or infotainment

functions, the vehicle may also have a GNSS, gyroscope, accelerom-

eter, microphone [65], or wireless transmitter/reciever [34]. On the

same vehicle, there may be different forms of these sensors, such as

thermal, monoscopic, or stereoscopic cameras; there are short-range

and long-range radars; andLiDARs canuse laser pulses, a continuous

laser beam, a rotating laser beam, or solid state. The arrangement of

the perception sensors will depend on the needs and requirements

of the AV designer. The perception systemmay include a component

for processing the data and extracting information critical to the

operation of the vehicle. For instance, it may parse image data for

important objects or segment it entirely into different critical regions.

This data is then passed on to the safety-critical tasks that need it.

2.2 Middleware
Communicationmiddleware is a foundational layer that facilitates ef-

ficient and reliable communicationbetween thevarious software and

hardware components of anAV. For instance, the various sensors are

connected to the middleware, which manages and directs the sensor

information toward the various tasks that require it. Themiddleware

will also provide priority assignments to various tasks, as well as

priviledge management for accessing information and overridding

task assignment. The middleware also provides basic functionality

for scheduling the tasks and meeting real-time requirements. These

tasksmay include algorithms that support safety or comfort features

that may autonomously operate the vehicle. A few examples of a

middleware include the Robot Operating System (ROS) [87, 105],

Ardupilot [9], PX4 [104], Yet Another Robot Platform (YARP) [102],

Cyber RT [12] and OpenRTM-aist [94].

2.3 AV Tasks
In the context of an AV, a task could be as simple as checking the

distance of the vehicle to nearby objects, or as complex as a multi-

object tracking algorithm. These tasks each have their expected

execution time, deadline, and release time. Using this information,

each task is assigned a priority so that the middleware knows which

to execute next. Tasks that have safety-critical deadlines, those that

have catastrophic consequences if missed, are called hard deadlines.

Some deadlines may be missed without consequence, and are called

soft deadlines. Those deadlines that do not lead to catastrophe if

missed but cause the result of the task to be unusable are called firm

deadlines. Depending on the task and environmental conditions,

these deadline concepts may have some applicable variation, such

as an (𝑚,𝑘)-firm deadline where at least𝑚 out of 𝑘 instances of a

task must complete execution before the deadline [54].

While the middleware can make assumptions about the tasks in

order to quickly obtain a feasible schedule, they often have complex

relationships with one another. For instance, some tasks may have

higher priority based on the context (mixed-criticality system) [37],

may not be executable until another dependent task completes [35],

or may access a resource shared by another task [39]. AVs encounter

variable and complex environments, so based on the context the
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middleware may be required to enforce strict deadlines on specific

tasks. Thus, flexibility of task priority assignment is necessary in

order to maintain safe operation of the vehicle.

3 ENVIRONMENT STATE
For AVs, the environment state is crucial for vehicles’ operation and

interaction with their surroundings. The environment state refers

to the comprehensive and real-time representation of all relevant

factors and conditions surrounding the vehicle. This includes static

elements such as road layouts, traffic signs, barriers, and driving

setting as well as more dynamic elements such as current vehicle

position, other vehicles, pedestrians, and weather conditions. An

AVmust accurately perceive and interpret the environment state as

every action the AV takes, from changing lanes to adjusting speed,

relies on an accurate representation of its current environment. For

instance, the AVmust be able to recognize a pedestrian crossing the

street, understand that it signifies a need to slow down or stop, and

take appropriate action.

3.1 Driving Environments
AVs drive through a vast number of public and private spaces, requir-

ing them to navigate serious safety, security, and privacy concerns.

At near-zero error rates, a level 4/5 AV is expected to handle com-

plex contexts like urban landscapes and harsh weather. This leads

to a large operational design domain, and AV companies utilize a

find-and-fix approach when handling novel crash scenarios. The

preference of this approach is due to trends in deep-learning ap-

proaches to use big data to improve the performance of models; the

developers of the AVs are incentivized to maximize their data collec-

tion activities to improve training and evaluation sets with respect

to minimizing accident statistics. To this end, AVs are equipped with

information-rich and diverse sensors, making them capable of col-

lecting incredibly sensitive data, particularly if driving scenes from

multiple vehicles are collated.

3.2 Surveillance
Such sensor networks can be misused to perform targeted and/or

mass surveillance [49] of individuals or communities. Already, car

companies collect and sell copious amounts of sensitive and personal

data with 3rd parties with little to no data controls or opt-outs for

users [42]. In some instances, law enforcement and government

organizations have requested self-driving car data without war-

rants [84]. This may be especially concerning if AV data is collected

and aggregated frommultiple vehicles. AV systems may become an

omnipresent platform for collecting and inferring people’s activi-

ties, a notion that many people expressed overwhelming discomfort

about in a study by Bloom et al. [15]. Continuously monitoring peo-

ple for the purposes of law enforcement or advertising seriously

threatens personal autonomy and creates technological platforms

ripe for the abuse of power [78].

3.3 Limitations & Takeaways
3.3.1 Existing Privacy Research. In the domain of AVs, there has

been a serious lack of works discussing potential privacy risks and

protection methods. Most AV privacy literature present legal argu-

ments and concerns. While there is a heavy emphasis with research

on location privacy and biometric (face) privacy, little research has

investigated privacy solutions in vehicles (e.g., opting out, privacy-

aware data collection and sensing, etc.).

3.3.2 Proprietary ML Attacks. Xie et al. propose categorizing pri-
vacy risks into individual (people, attributes), population (commu-

nities, towns, demographics), and proprietary (ML models, archi-

tectures, sensor details), creating a taxonomy of attacks and de-

fenses [138]. They, like most other works, tend to focus on adversar-

ial ML attacks, (e.g., membership inference), differential privacy, or

federated learning. [48, 55, 66, 103].

3.3.3 Sensor Privacy. We argue that this focus on proprietary pri-

vacy in AVs is insufficient, impractical, and fails to address the prob-

lem at its root cause – intrusive data collection and processing prac-

tices. Rather, privacy protection mechanisms should be integrated

earlier in AV pipelines, e.g., sensor systems, to prevent the identifica-

tion of individuals. Rather than raw camera data being collected and

processed by AV companies, the data could be processed on-vehicle

via semantic segmentation or using obfuscation techniques.

3.3.4 Usable Privacy Solutions. Moreover, effective and strict pri-

vacy regulations on data collection and storage are needed as AV

systems mature and become deployed in our society. Without these

protections, end-users could resort to using anti-surveillance tech-

nologies/wearables thatattackobjectdetectorsor sensors, increasing

safety risks [136, 140].

ResearchQuestions−❶: To what extent do AVs exacerbate
surveillance? What are the direct implications of widespread
AV adoption, and how will it impact personal freedoms?
Can we provide privacy to the environment surrounding an
AV without detriment to the AV’s performance (safety and
otherwise)?

4 SENSOR SYSTEM
Theperceptionmodules inAVsareresponsible forunderstandingand

interpreting the environment. Typical mechanisms of self-driving

vehicles involve perceiving surroundings, tracking objects, and plan-

ning future trajectories for the vehicle itself. As a result, the percep-

tion module is especially crucial as it provides initial results for use

in safety-critical algorithms, which causes the perception module to

be a desirable target for an attacker. On one hand, the adversarymay

alter the environment. The adversary may also physically inject a

signal directly into the sensor. We categorize these as Indirect and
Direct AV Perception Attacks respectively.

4.1 Indirect AV Perception Attacks
For indirect perception attacks, there are several proven methods

from prior work. For instance, an adversary may introduce modifi-

cations to the road pavement to cause the vehicle to misinterpret its

lane position and in turnmislead the lane detection system [70, 114].

Another strategy employed is to project adversarial patches to road

signs and nearby walls [85, 88, 112]. The creation of adversarial ob-

jects has also shown effectiveness in misguiding object detection
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systems [20]. Additionally, pedestrians may wear clothes with mate-

rials or patterns specifically designed to trick the sensors in order to

remain undetected [148] or detectedwith incorrect label [14, 64, 140].

4.2 Direct AV Perception Attacks
When an adversary performs a direct perception attack, it involves
physically manipulating the sensor to provide falsified measure-

ments. These attacks may be naive with the only goal being to obfus-

cate the environment. However, an advanced adversary is capable of

removing and/or adding specific objects without impacting the rest

of the environment. These attacks have shown to at least reduce the

overall performance of MLmodels that AVs use, or in the worst case

cause a collision of the vehicle. One way of directly causing these at-

tacks is for anadversary tousea laser to inject adesired signal into the

sensor, suchasLiDARremoval [18,20,56,127,150]andappearing[19,

21, 118, 124] attacks. To a lesser degree, lasers have been shown to

be useful on other sensors as well, such as microphones [123].While

lasers have not been shown to be effective for these purposes on

cameras [52], infrared light [112, 113, 130], acoustic signals [68], and

electromagnetic interference [75] have been shown to be capable

of directly injecting adversarial signals into the camera. Ultrasonic

sensor spoofing has also been demonstrated to be feasible [141].

4.3 Defenses
To counter indirect perception attacks, state-of-the-art defenses sug-
gest training the lane detection system on a diverse dataset that in-

cludesvariousperturbations, enabling thedefensivemodule to recog-

nize and ignore deceptive patterns. Adversarial training, a technique

that has gained traction in recent years, specifically addresses attacks

that use adversarial patches [26, 46, 85]. By training the vehicle’s neu-

ral networks with adversarial examples, the system becomes more

robust to deceptive inputs [124, 140, 149].While this approachmight

marginally decrease the system’s performance under normal condi-

tions, its strength against known attacks is significantly enhanced.

Defenses against direct perception attacks are trickier due to a

stronger and more resourceful adversary. These defenses may go

as far as requiring hardware modifications to thwart the attacker.

For instance, defenses for LiDAR removal attacks search for “shad-

ows" left behind as an artifact of the attack [57, 130]. An adaptive

adversary may attempt to hide the removal of an object by covering

the shadow with a spoofed signal. There are also defenses for the

appearing attacks, which take advantages of constraints imposed

on the adversary for launching the attack [24, 137].

Filters are also used to defend against the direct attacks, such as
a software filter for detecting infrared light attacks [130]. Hardware

filters or shields are suggested for defense against attacks on MEMS

accelerometers [126] and gyroscopes [51]. Physical filters may be

useful to reduce the physical surface area an attack must target. For

instance, camera hoods or diffracting films can block straight light

beams from laser attacks [123].

Finally, a common approach is to use traditional intrusion detec-

tion systems to detect anomalous sensor data. Such a systemmayuse

estimates of sensor data to compare with the measurements [32, 33]

or use a deep neural network to learn hidden features of anomalous

sensor data [145].

4.4 Limitations & Takeaway
4.4.1 Absence of Provable Defenses. Often defenses against attacks
on the perception system are constantly in a back-and-forth game

of cat-and-mouse. Each time a new attack is defended against, a new

attack takes its place to circumvent the defense.While defenses often

remain under-evaluated, presented as an afterthought to the attack

component, the primary issue is that defenses are typically hard to

prove as secure. Oftentimes, defenses use probabilistic approaches

that are still vulnerable to clever deception.

4.4.2 No Common Evaluation Practice. Despite the growing pop-
ularity of sensor attacks, the metrics used to evaluate success vary

substantially across works. In some cases, simply achieving a mis-

classification is enough, while in other cases evading detection from

the most popular defense is sufficient. While the difference in goal

is largely due to the “story" a work builds, this makes comparing the

impact of novel attacks impossible. This leads to our next takeaway.

4.4.3 Rarely Known Downstream Effect on Safety. The lack of com-

mon evaluation practice has caused a departure from focusing on

actualAV safety as a consequence of a novel attack.While the attacks

thoroughly evaluate the initial goal, it is not understood to what

effect the attacks cause the AV to actually do anything dangerous.

In a fewwork, dangerous control is shown to be feasible, but there is

a notable absence of the range of scenarios for which this dangerous

control may occur. Future work can improve the state of the art by

providing a rigorous analysis of the state-space for which sensor

attacks may successfully cause dangerous control outcomes.

ResearchQuestion−❷: What set of evaluation metrics
may satisfy the criteria for demonstrating novelAVperception
attacks while simultaneously showing the real impact on the
overall AV safety? Likewise, is it possible to find a provably
secure defense against sensor attacks that do cause dangerous
control outcomes?

5 COMPUTE ENVIRONMENT
The compute environment plays a vital role in AVs to guarantee the

real-time completion and accuracy of the perception, planning, and

control tasks [83]. Generally, itmaintains the integrity of the commu-

nicationmiddleware, real-time scheduling, and CPU/GPU resources.

5.1 AV Software Stack
Autoware is an “end-to-end" open-source software solution for au-

tonomous driving [11]. It offers a comprehensive suite of tools and

libraries for perception, planning, and control [10, 71]. A similar tool

is Baidu Apollo, which is also open-sourced and aiming at level 4/5

autonomy [13]. However, incorrect implementations and misuse

of APIs, concurrency, and memory expose many software vulner-

abilities [45], which can leak privacy information and impact the

AV’s safety. One example is a cache side-channel attack can be used

to infer the location of an AV that runs the adaptive Monte-Carlo

localization (AMCL) algorithm [86].

The AVGuardian system is a testament to the importance of soft-

ware defenses. It addresses overprivilege issues in AV software, a

scenario where a software module has more permissions than it
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requires, making it a potential weak point for attackers. By identi-

fying and rectifying such instances, AVGuardian enforces stricter

permission controls, thereby narrowing potential attack avenues

[60]. Firmware code injection is another type of attack for the com-

pute environment which could impact the perception and control

modules of the AV [53]. By modifying the sensor data in real-time,

the attacker achieves emergencybrakingor collisionoutcomeswhen

running LiDAR-based perception and camera-LiDAR fusion percep-

tion in Apollo 7.0 [53]. Besides, by simply buffering and replaying

scene data, safety-critical accidents are achieved.

5.2 CommunicationMiddleware
While there exist several options forAV communicationmiddleware,

ROS is by far the most commonly used platform for autonomous

vehicles [87, 105]. It faces significant security challenges, especially

in its node and message communication systems. Within the ROS

framework, there is no authentication mechanism for message pass-

ing or newnode creation,which leaves it vulnerable to cyber-attacks.

Attackers can use IP addresses and ports from the master node to

create a new ROS node or hijack an existing one without additional

authentication [67]. This vulnerability can lead to excessive con-

sumption of system resources, such as memory and CPU usage,

thereby negatively impacting the performance of legitimate ROS

nodes and potentially causing the entire autonomous driving system

to collapse. Additionally, ROS message security is compromised due

to the ease of intercepting and replaying messages. Attackers can

monitor and record ROSmessage traffic through the master node’s

IP address and port, storing this data in a ROS bag file. This allows

them to replay historical messages, disrupting ongoing communica-

tions [67]. Furthermore, sinceROScommunication is basedon socket

communication, attackers can remotely monitor and intercept ROS

messages without directly compromising the master node [79, 89].

ROS2 is developed using the Data Distribution Service (DDS) for

security support [38], called Secure ROS2 (SROS2). However, the

adversary can break the access control policies through out-of-date

permission files or services. The reason is that when the access con-

trol policies are updated, SROS2 simply replaces the old permission

files with the new ones, or sets up a new directory to store the new

files and changes the corresponding load pointers [38].

5.3 Limitations & Takeaway
5.3.1 Lacking Comprehensive Code Check. The AV software stack

is complex, encompassing a vast array of functionalities from sensor

fusion and machine learning algorithms to decision-making and

control systems. The large volume and intricacy of the code, coupled

with the dynamic and interdependent nature of the systems, make

it extremely difficult to thoroughly identify and rectify all potential

bugs and errors. As a result, it leaves room for vulnerabilities that

could be exploited by malicious attacks, thereby posing significant

risks to the safety and reliability of AVs [45]. This scenario under-

scores a critical gap in the development and maintenance of AV

software, highlighting the need for more robust and sophisticated

methods in code analysis and security assurance. Formal verification

could help [40]. Extensive testing and verification is needed for the

algorithm and software stack.

5.3.2 Other Potential Vulnerabilities System Perspective. AVs con-
front an array of potential vulnerabilities from a system perspective,

particularly concerning timing correctness and energy consumption,

which are often ignored by the emphasis on accuracy and perfor-

mance. Timing correctness is crucial in AVs as even slight deviations

in processing times can lead to failures in decision-making, impact-

ing the vehicle’s ability to respond to real-time road situations [25].

Concurrently, energy consumption poses another challenge; while

efforts tominimize power usage are essential for the longevity and ef-

ficiency of AVs, they must not compromise the system’s operational

integrity. Techniques like Dynamic Voltage and Frequency Scaling

(DVFS), used for reducing energy consumption, can, if not care-

fully managed, impact the predictability and consistency of system

performance.

ResearchQuestion−❸: The complexity of AV software
can lead to overlooked vulnerabilities, posing safety risks.
Additionally, the emphasis on accuracy often neglects timing
and energy efficiency aspects, which are critical for long-term
safe AV performance. Can attacks on other attributes such
as timing and energy lead to safety-critical failures?

6 ALGORITHM
On top of the compute environment, algorithms are working with

various sensing data to find the optimal navigation decision. To

achieve this, the car should first track the trajectory of surrounding

vehicles and predict/plan the future trajectory of the ego vehicle.

Given that an erroneous navigation decision can directly lead to

a fatal accident, we need to ensure safety from possible attacks or

malfunctions arising from the driving environment.

As deep learning technology advances, recentAValgorithmshave

evolved to use Deep Neural Networks (DNNs). Accordingly, there is

significant research at the algorithm level that demonstrates a strong

adversary exploiting the probabilistic nature of DNNs to intention-

ally cause safety-critical failures of AV decision-making processes

[142].

6.1 Tracking
3D Multi-object tracking (MOT) is achieved by capturing object

motion across detection results in consecutive frames [135]. Due

to its ability to interpret historical context, tracking is increasingly

used as a defensive strategy against attacks targeting AV perception

systems. For example, PercepGuard [88] checks the consistency of

tracked objects with their respective category characteristics, acting

as a countermeasure against misclassification attacks. In a similar

vein, 3D-TC2 [143] utilizes tracking and prediction of objects’ fu-

ture positions to check temporal consistency with detected objects,

effectively countering LiDAR spoofing attacks.

Concurrently, advanced attacks specifically designed for tracking

algorithms have emerged. Jia et al. [69] introduced an adversarial at-
tack and defense algorithm that manipulates the location and size of

bounding boxes to boost digital domain robustness. Likewise,Muller

et al. [93] have devised an innovative tracker hijackingmethod. This

technique modifies the trajectory of a target object by either shift-

ing it onto an unrelated path or completely altering its intended
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trajectory. A key feature of this method is the creation of physi-

cally plausible attacks, avoiding unrealistic manipulations, such as

moving objects into the sky.

Moreover, tracking data is highly susceptible to malfunctions due

to challenges like occlusion, dynamic andunpredictable objectmove-

ments, and variations in the ego vehicle’s perspective. The absence

of depth information in vision data often leads to misinterpretations.

As a result, continuous research into attacks, defenses, and potential

malfunctions is essential for ensuring the safety and security of AV

systems.

6.2 Navigational Safety
In the planning module, AV systems are centered around finding the

most efficient routes to their destinations. This involves merging

data from detection and tracking systems to formulate future trajec-

tories and actions. In this realm, Reinforcement Learning (RL) is no-

tably effective, optimizing behavior across varied driving conditions

while focusing on maximizing predefined rewards. Consequently,

RL-based planning algorithms have increasingly become targets

for adversaries. For instance, He et al. [59] strategically manipulate

observed states and environmental dynamics to mislead RL-based

decision-making systems.

Taking a different direction, ACERO [122] unveils a novel attack

strategywherein an adversary orchestrates their vehiclemovements

to endanger a targeted vehicle. This technique involves crafting an

optimal adversarial drivingmaneuvers by considering safety require-

ments and physical constraints for a successful attack execution.

Considering that navigation decisions are more closely tied to a

vehicle’s active decision-making than any other module, a height-

ened level of safety awareness is essential. Mo et al. [92], for instance,
showcase the integration of risk assessment and safe policy search

in RL agents. In a similar context, Li et al. [82] contribute to a more

realistic risk assessment in multi-AV environments by taking into

account the various driving intentions of surrounding vehicles, such

as cut-ins and overtakings.

6.3 Robustness to Domain Shifts
One critical problem in self-driving vehicles is ensuring consistent

object detection or segmentation performance across different do-

main shifts such as weather. Ensuring the safety of self-driving

vehicles against adverse weather conditions such as rain, fog, or

snow is a difficult yet important problem to avoid unexpected behav-

ior in such conditions. The importance of this problem has seen an

emergence of datasets that include different weather conditions

such as BDD100K [144], Cityscapes [27] and its rainy [63] and

foggy [110] variants, KITTI [47] and its rainy [91] and foggy [91]

variants, and NuScenes [16]. With such datasets, some AV specific

approaches have been proposed to handle different weather con-

ditions [8, 81, 129]. However, it is worth looking at advances in

the more general computer vision domain to understand how such

approaches may be improved.

As a case study, unsupervised domain adaptation in object de-

tection and segmentation [23, 44, 61, 62, 73, 81, 96, 99, 100, 107,

109, 119, 147] is one key area of interest due to its ability to lever-

age unlabeled images or synthetically generated images. These

approaches include adversarial learning to learn domain invari-

ant features [23, 44, 61, 100, 109, 119], self-training on pseudo la-

bels [73, 107, 147], image-to-image translation [8, 62], and learning

with motion or temporal-based priors [50, 80, 101, 139], to name a

few. Many of these works use simulated or real AV datasets and fo-

cus on the machine learning aspects with evaluations aimed around

mIoU for segmentation and mAP for detection. These approaches

from the vision domain offer much potential inspiration towards

buildingAVperception systems that can one day be trusted to handle

the whole range of realistic driving environments.

6.4 Limitations & Takeaway
6.4.1 Error Propagation in Sequential Execution of Multi-DNN. The
perception algorithm plays a pivotal role as it provides initial results

to subsequent modules. Given that state-of-the-art perception is not

entirely accurate in its predictions, there is a risk of error propagation

to further “downstream" modules. To address this, some algorithms

incorporate strategies to validate perception results. These strategies

involve statistically calculating the propagated error of bounding

boxes [133] or running algorithms at the raw sensor data level [24].

However, accurately computing data uncertainty, intra-model un-

certainty, and inter-model uncertainty remains a complex challenge.

This complexity necessitates a more comprehensive understanding

to ensure a robust risk assessment.

6.4.2 Limited Coverage on Complex and Diverse Real-World Driving
Environment. Self-driving companies train foundational models for

different tasks and deploy thesemodels in cars via post-optimization

[115, 132]. A significant challenge arises from the limited datasets

used in training these models, which may not encompass the full

spectrum of real-world road environments. This limitation often re-

sults in a distribution shift in the inputs fed into AV systems, leading

to erroneous outputs.

To mitigate these shift issues, methods such as fine-tuning, do-

main generalization, and test-time adaptation are being explored

[8, 81, 129]. Thesemethods aim to lessen the impact of domain shifts

and ensure that systems remain up-to-date. However, sincemachine

learning models must be optimized before deployment, this opti-

mization process inevitably limitsmodel size, consequently affecting

their learning capabilities. Therefore, a crucial decision lies in bal-

ancing the trade-off between optimization and learning capability,

and determining which model (deployed vs. foundational) should

be adjusted, and at what point in time.

6.4.3 Lack of AV Specific Solutions for Domain Shift Invariance. To
guarantee the safety of AVs, the perception algorithmmust be robust

to distributional shifts such as poor weather or other environmental

conditions that avehiclemay run into [8, 23, 61, 62, 73, 81, 99, 100, 107,

119, 129, 147]. The robustness against different distribution-shifts

is a defense against a “natural" attacker, where the threat vector is to

identify the worst realistic driving conditions for the perception al-

gorithm. Such work includes papers that are marketed more overtly

towards AVs [8, 81, 129] and others that are more general, domain-

adaptation focused but evaluated on AV-related datasets [23, 50, 61,

62, 73, 80, 100, 101, 107, 119, 139, 147]. We highlight two interesting

trends that could be useful to consider for further research.
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The first is that these approaches generally focus on the RGB

image domain and use general techniques that do not make strong

assumptions about the AV’s setting. For example, incorporating

general state-of-the-art vision techniques such as domain adapta-

tion with multi-sensor fusion networks (assuming of the presence

of LiDAR) may lead to more robust feature extraction specifically

for AVs. Traffic signs also have less variation than ImageNet [108]

classes (e.g., traffic signs are limited to rigid shapes and are usually

never upside-down whereas a dog has a lot more variation in its

shape). This may lead to AV specific solutions to extracting robust,

domain invariant features, for example by extending approaches

in hierarchical classification where the root classifier determines

the shape and the leaf classifiers determine the specific class [22].

Such an approach could bias a model towards features that are more

invariant to weather conditions and may work better on traffic sign

classification than more general datasets like ImageNet [108].

Second, theseworks evaluatemostly on the basis ofmAP ormIoU,

which are more vision-aligned metrics and do not necessarily cap-

ture the safety risk of the overall system that may be using these

MLmodels. The real-world ramifications of the robustness (or lack

thereof) may require AV-specific metrics that take into account the

full system and estimates the end-to-end safety implications of any

misaligned predictions. For example, incorrectly detected objects

could be weighted by their distance to the AV, with closer objects

beingpenalizedharsher since farther objects can still be avoided if de-

tectedproperly in anear-future frame. Specificmisclassifications can

also be less severe than others (e.g., mistaking a stop sign for a speed

limit sign vs. mistaking a cat for a dog). Finally, the performance

of a perception algorithm can be measured in the context of how it

performs within end-to-end AV system (i.e., planning and control).

ResearchQuestion−❹: How can we reinforce robustness
and reliability, both intra-module and inter-module, within
our pipeline to ensure preparedness for increasingly complex
and unpredictable driving scenarios? Moreover, can such
preparation increase defenses against a strong adversary?

7 ENVIRONMENT INTERACTION
7.1 Legal Considerations
In the context of an AV attack impacting human safety, the legal

implications are multifaceted and complex. When such an attack re-

sults in a collision or similar incident, determining liability involves

analyzing several factors, including the nature of theML system, the

intent behind the adversarial input, and existing legal frameworks.

First, the nature of the ML system plays a crucial role. For AVs,

the manufacturer could be held liable under product liability laws

if the system is found to be defective or not reasonably safe. Vladeck

argues that traditional product liability principles can extend to AI

systems, particularly when they fail to perform as safely as an or-

dinary consumer would expect [128]. Similarly, Calo suggests that

manufacturers might be held strictly liable for damages caused by

their products, regardless of fault or negligence [17].

Second, the source and intent of the adversarial input are cru-

cial. If the AV attack is traced back to a specific entity or individual,

they could be held liable under tort law for intentionally causing

harm. As Kerr points out, if a person knowingly manipulates data

to cause an AI system to malfunction, they might be liable for any

resulting damages or injuries under theories of intentional torts or

cyber-trespass [72].

Finally, the existing legal frameworks and their adaptation to

emerging technologies are paramount in such scenarios. As Pagallo

discusses, the evolution of AI challenges traditional legal concepts

of liability and responsibility, necessitating a reevaluation of legal

frameworks to accommodate these technological advances [98]. This

view is also supported by Solaiman, who highlights the need for new

legal paradigms to address the unique challenges posed byML sys-

tems [121], and Widen and Koopman, who propose that the AV

industry should cooperate with government regulators to slowly

introduce policy that would improve public comfort with AVs [134].

7.2 Regulatory Standards
There are several standards that govern the safety and security of

autonomous vehicles. The most notable standard is ANSI/UL 4600,

which outlines a standard for autonomous product safety [5]. While

it does not define pass/fail criteria for safety, it does provide guidance

for how to ensure safety is applied to the design, testing, validation,

human-machine interaction, and other processes. Alongside this

standard, the NHTSA requires reporting of crashes that involve ve-

hicles that are equipped with autonomous systems [95]. Moreover,

there are standards from ISO that define the functional safety of

vehicles in the event of system failures [3], as well as the intended

functionality of vehicle systems in the absence of faults [2]. The IEEE

also provides a standard set of scenarios that AVs should be able to

safely handle [120].

For security, the primary standard for security of road vehicles is

ISO/SAE 21434 [1]. There are other standards that concern the stan-

dard for vehicle cybersecurity management systems [106], and au-

diting the cybersecurity of vehicles [6]. Outside of vehicles, there are

additional standards for security, such as ISO27000 [4] andANSI/ISA

62443 [7].

7.3 Limitations & Takeaway
7.3.1 Laws Must Balance SafetyWithout Slowing Tech Growth. Due
to recent safety concerns regarding AVs, there is a growing distrust

for their public use. In response to these concerns, governments

(local or national) may begin to impose strict sanctions on their op-

eration. While this response is well-intentioned and likely required

in order to regain faith in the public deployment of AVs, there is

room for the legislation that follows to strongly discourage the de-

velopment of the tech. If it is too strict, then the barriers it enforces

may deincentivize further investment and ultimately kill the tech-

nology on the stop. Future legislation must carefully consider the

intended outcomes once enacted, and support should be provided

to AV companies to ensure they can continue development.

7.3.2 Ad Hoc Provisions of AV “Driving Licenses". The existing stan-
dards primarily serve the purpose of L2/L3 AV features. Presently,

when a L4 AV hits the road, local governments provide a license

to the autonomous driver based on ad hoc standards that adapt as
issues arise. This method of providing fixes as issues arise is against

the goals of safety engineering, which seeks to eliminate risk before
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damages occur. Presently, issuing licenses to L4 AVs require stricter

regulation and a stronger safety culture.

7.3.3 ModelingHumanBehavior isHard. Despite the legal necessity
to demonstrate functional safety, especially when human-life is at

risk, it is extremely difficult to model the behavior of other people.

This includes how other vehicles may respond to the ego vehicle’s

control, how aggressive cyclists may behave on the road, or how

pedestriansmayactduringaroadcrossingscenario.Nomatter thesit-

uation, people can sometimes do seemingly random things and catch

theAVoff-guard.As a result, despite anybest effort, it is not currently

practical to completely guarantee functional safety requirements.

ResearchQuestion−❺: Future legislation will need to
consider how and when AV software can be granted a license
to autonomously operate in specific environments. How can
this be provided to ensure the public does not involuntarily
partake in a dangerous experiment, while simultaneously
encourage the further development of AV technology?

8 END-TO-END EVALUATION EXAMPLES
Before moving on to our future recommendations, we discuss some

caseswhere there is a substantial attemptat end-to-end testingofAVs.

Oneof theearliestmodelsofAVs is fromMobileye’sRSS formalmodel

for providing safety assurances [117]. RSS provides a model based

on physics for assuring the safety of the vehicle. While the model

is abstract and requires exact precision of the measurements of the

vehicle’s surroundings to ensure the safety of the vehicle, its a step in

the right direction. Other work investigate impacts on safety due to

failures in the perception stack to fill this gap [43]. There are also ad-

ditions to end-to-end testing that attempt to test for rare events [97],

using adaptive stress testing to pursue stronger coverage of scenar-

ios [28], and using fuzzing to discover bugs in the AV stack [74].

The major gap in end-to-end validation testing of AV safety is

in the simulation tools. There is a substantial gap between AVs in

simulation compared to real-world AVs, otherwise known as the

sim-to-real gap. Overcoming this drawback is still an area of active

inquiry. Current solutions primarily seek to cross the sim-to-real

gap via transferability of training in simulation to real-world envi-

ronments [36, 111, 125]. These usages of sim-to-real do not seek to

validate the system safety.

9 FUTURERESEARCHRECOMMENDATIONS
Recommendation #1: For future research in AV security, a key

recommendation is to focus on comprehensive end-to-end testing

strategies that encompass the entire system’s operation, frompercep-

tion to control, to ensure robustness and safety in diverse real-world

scenarios. This would include the future creation of universal met-

rics that may be used across all problems to accurately weigh the

strengths andweaknesses of various approaches. Thesemetrics may

measure various aspects of the pipeline in order to demonstrate

where attacks/defenses are most effective, as well as the end result

so that onemay see the threat that an attack has on functional safety.

Recommendation #2: Effectively utilizing the data from sur-

rounding vehicles and integrating it is essential to gain a more com-

prehensive understanding of the driving environment. Cooperative

perception and planning strategies can significantly enhance safety

and security, particularly in scenarios where a vehicle is compro-

mised or its sensors are disrupted. This approach ensures more

reliable and accurate sensing outcomes, even in challenging circum-

stances. Moreover, it’s crucial to consider that drivers themselves

can inadvertently be a source of safety and security issues. Even

without malicious intent, their unavoidable actions may resemble

attack-like behavior to other vehicles in specific traffic situations.

Therefore, in addition to the AV technology stacks illustrated in

Fig. 1, monitoring and understanding driver behaviors can play a

pivotal role in preventing AVs from exacerbating potential hazards.

Recommendation#3: The licenses ofAVs should havemore con-

crete and strict regulation for when and how they are provided and

enforced. This would include clearer standards for the sort of scenar-

ios that theAVs can provide provable functional safety for.Moreover,

these AVs should be required to have well-regulated privacy policies

with respect to the data they collect on the road. Packaging privacy

requirements with the safety requirements of an AV license would

provide an encouraging solution to both issues at once. What re-

mains to be determined is where the regulation “sweet spot" is for

strictly enforcing an AV license. Government should seek to avoid

deincentivizing the development of AVs, so finding this balance is

crucial.
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